Course Syllabus:

STS3401 - Probability and Statistics I

Course Information

Course Name

Probability and Statistics I

Course Code

STS3401

Credits

3(3+0)

Total Student Learning Hours

120

Prerequisite

MTS3101

Learning Outcomes

Upon completion of the course, students will be able to:

- 1. Explain the concepts of probability and appropriate statistical methods. (C4)
- 2. Solve probability and statistical problems using appropriate methods and systematic calculations. (CTPS, NS)
- 3. Demonstrate skills in continuously applying probability and statistical concepts. (A3, LL)

Synopsis

This course covers probability theory and appropriate statistical methods. Probability and statistical problem-solving using appropriate methods are also discussed.

Course Content

Lecture Hours: 42

Topics: 10

1. Statistical Concepts (3 hours)

- Descriptive and inferential statistics
- Population and sample
- Quantitative and qualitative data
- Discrete and continuous random variables

2. **Data Description** (6 hours)

- Graphical methods for data description
- Measures of central tendency
- Measures of dispersion
- Coefficient of variation

3. **Probability** (3 hours)

- Basic definition of probability
- Counting techniques
- Conditional probability, independent events, and Bayes' Theorem

4. Discrete and Continuous Random Variables (3 hours)

- Probability density function and cumulative distribution function
- Expected value
- Chebyshev's Theorem

5. Probability Distributions (3 hours)

- Bernoulli, binomial, hypergeometric, Poisson, negative binomial, geometric distributions
- Uniform, normal, and exponential distributions
- Poisson and normal approximations to binomial

6. Sampling Distributions (6 hours)

- Sample mean
- Sample proportion
- Difference between two sample means
- Difference between two sample proportions

7. Estimation (6 hours)

- Confidence interval for a single mean
- Sample size determination and error estimation
- Confidence interval for the difference between two means
- Confidence interval for a single proportion and the difference between two proportions
- Confidence interval for a single variance and the ratio of two variances

8. **Hypothesis Testing** (6 hours)

- Type I and Type II errors
- Hypothesis testing for a single mean and the difference between two means
- Hypothesis testing for a single proportion and the difference between two proportions
- Hypothesis testing for a single variance and the ratio of two variances

9. Chi-Square Tests (3 hours)

- Categorical data
- Goodness-of-fit test
- Test of independence

10. Regression and Correlation (3 hours)

- Simple linear regression and interpretation
- Correlation coefficient and determination
- Hypothesis testing for the population correlation coefficient
- Confidence interval for the slope and hypothesis testing for the slope

Assessment

The course assessment consists of coursework (60%) and a final examination (40%), with the following breakdown:

Assessment Component	Percentage	Timing
Test 1	20%	Week 5 (10 November 2025)
Test 2	20%	Week 11 (29 December 2025)
Group Assignment 1 (Pitching Video)	8%	Week 7
Quiz 1	2%	Week 5 (10 November 2025)
Quiz 2	2%	Week 11 (31 December 2025)
Group Assignment 2 (Case Study Written Report)	8%	Week 12
Final Examination	40%	End of Semester

Table 1: Assessment Breakdown for STS3401

References

- 1. Baron, M. (2019). Probability and Statistics for Computer Scientists (3rd ed.). Boca Raton: Chapman and Hall/CRC.
- 2. Mary, C. M. (2019). Probability and Mathematical Statistics: Theory, Applications, and Practice in R. Oxford: SIAM.
- 3. Mendenhall, W., & Sincich, T. (2016). Statistics for Engineering and the Sciences (6th ed.). Boca Raton: Chapman and Hall/CRC.
- 4. Ross, S. M. (2020). Introduction to Probability and Statistics for Engineers and Scientists (6th ed.). London: Academic Press.
- 5. Walpole, R. E., Myers, R. H., Myers, S. L., & Ye, K. E. (2016). *Probability and Statistics for Engineers and Scientists* (9th ed.). Hoboken: Pearson.